skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schaefer, Charles"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract There is not a clear understanding of the extent by which naturally occurring reactions can attenuate trichloroethene (TCE) and its daughter products within low permeability zones (LPZs), and addressing this knowledge gap requires advancement of methods to accurately measure in situ volatile chemical concentrations. In this study, a soil coring method that freezes the soil in‐situ (a.k.a., cryogenic coring) was utilized to measure depth‐discrete distributions of TCE and its volatile reaction products through a TCE‐impacted silty clay aquitard, and results were compared with those from adjacent soil cores taken using a conventional coring approach. Vertical concentration profiles of TCE,cis‐1,2‐dichloroethylene (DCE), vinyl chloride (VC), ethane, and methane were all compared between the two coring methods, and results indicate the two coring methods recovered statistically equivalent concentrations of volatiles across most depths of the fine‐grained cohesive clayey soil at the study site. Biotic reductive dechlorination was the dominant TCE reaction pathway at the site; several reduced gasses that are possible markers for abiotic reduction were detected, but their concentrations and intervals of occurrence were not sufficiently consistent to indicate whether they were from abiotic TCE reduction or unrelated biological processes. Overall, cryogenic coring yielded improved recovery of sand lenses compared to conventional coring, but offered no apparent benefits for improved recovery of TCE and its volatile reaction products in the low permeability aquitard material at the site. 
    more » « less
  2. Deep breaths are one of three breathing patterns in rodents characterized by an increased tidal volume. While humans incorporate deep breaths into vocal behavior, it was unknown whether nonhuman mammals use deep breaths for vocal production. We have utilized subglottal pressure recordings in awake, spontaneously behaving male Sprague-Dawley rats in five contexts: sleep, rest, noxious stimulation, exposure to a female in estrus, and exposure to an unknown male. Deep breaths were produced at rates ranging between 17.5 and 90.3 deep breaths per hour. While overall breathing and vocal rates were higher in social and noxious contexts, the rate of deep breaths was only increased during the male’s interaction with a female. Results also inform our understanding of vocal-respiratory integration in rats. The rate of deep breaths that were associated with a vocalization during the exhalation phase increased with vocal activity. The proportion of deep breaths that were associated with a vocalization (on average 22%) was similar to the proportion of sniffing or eupnea breaths that contain a vocalization. Therefore, vocal motor patterns appear to be entrained to the prevailing breathing rhythm, i.e., vocalization uses the available breathing pattern rather than recruiting a specific breathing pattern. Furthermore, the pattern of a deep breath was different when it was associated with a vocalization, suggesting that motor planning occurs. Finally, deep breaths are a source for acoustic variation; for example, call duration and fundamental frequency modulation were both larger in 22-kHz calls produced following a deep inhalation. NEW & NOTEWORTHY The emission of a long, deep, audible breath can express various emotions. The investigation of deep breaths, also known as sighing, in a nonhuman mammal demonstrated the occasional use of deep breaths for vocal production. Similar to the human equivalent, acoustic features of a deep breath vocalization are characteristic. 
    more » « less